Merging NNLO with Parton Shower

Ye Li

SLAC National Accelerator Laboratory
Stanford University

in collaboration with **Stefan Höche** and **Stefan Prestel**

Fermilab

Dec 18, 2014

Questions

Why do NNLO ?

Why do Parton Shower?

Questions

Why do NNLO ?

Quantitative predictive power only starts at NLO; need NNLO for high precision

Why do Parton Shower?

Need Higher Order

Campbell, Ellis, Williams arXiv: 1105.0020

\sqrt{s} [TeV]	$\sigma^{LO}(W^+Z)$ [pb]	$\sigma^{NLO}(W^+Z)$ [pb]
7	6.93(0)	$11.88(1)_{-4.2\%}^{+5.5\%}$
8	8.29(1)	$14.48(1)_{-4.0\%}^{+5.2\%}$
9	9.69(1)	$17.18(1)_{-3.9\%}^{+4.9\%}$
10	11.13(1)	$19.93(1)_{-3.7\%}^{+4.8\%}$
11	12.56(1)	$22.75(2)_{-3.5\%}^{+4.5\%}$
12	14.02(1)	$25.63(2)_{-3.3\%}^{+4.3\%}$
13	15.51(2)	$28.55(2)_{-3.2\%}^{+4.1\%}$
14	16.98(2)	$31.50(3)_{-3.0\%}^{+3.9\%}$

Quantitative predictive power only starts at NLO

Status of NLO

disclaimer: not a complete list personally biased

- Rapid progress towards full automation: GoSam,
 OpenLoop, MadLoop, ...
 - Thanks to newly developed techniques such as Unitarity method, OPP etc.

Bern, Dixon, Dunbar, Kosower; Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt, Melnikov, ...

Tools for tensor integral reduction: GOLEM, Collier, ...

Denner, Dittmaier; Binoth, Guillet, Pilon, Heinrich, Schuber; ...

- Tools for OPP based reduction: CutTool, Samurai, Ninja ...
- Unitarity method: Blackhat

Status of NLO

- Even more impressive when it comes to multi-leg NLO calculation
 - Number of diagrams increases factorially with each additional final state particle

Status of NNLO

Study at LHC mandates precision of NNLO and beyond

the focus of

this talk

- Especially needed for Higgs!
 - projected experimental uncertainty at percent level, while NLO K-factor ~ 2

CMS snowmass workgroup report

$L \text{ (fb}^-1)$	$\gamma\gamma$	WW	ZZ	$b\overline{b}$
300	[6%, 12%]	[6%, 11%]	[7%, 11%]	[11%, 14%]
3000 <	[4%, 8%]	[4%, 7%]	[4%, 7%]	[5%, 7%]

Drell-Yan and Higgs @ NNLO known for a while

Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven Hamberg, van Neerven, Matsuura

Both color singlet production: simple b/c QCD correction in initial state only

Intro: Higgs via Gluon Fusion

- Finally found Higgs ... need to know if it is SM-like
 - Best prediction from the SM bears ≈15% theoretical uncertainty even at NNLO
 - N3LO calculation well underway; recently results at threshold becomes available
 Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger YL, Manteuffel, Schabinger, Zhu
 - Mixed EW QCD correction at NNLO worked out in 2008, suggests a good approximation using factorized approach in combining EW and QCD corrections
 Actis, Passarino, Sturm, Uccirati Anastasiou, Boughezal, Petriello
 - Gluon Higgs effective coupling calculated to 5 loops in infinite top
 mass limit (2005); full top mass effect known up to NLO, and NNLO top
 mass dependence estimated (2009)

 Schroeder, Steinhauser; Chetyrkin, Kuhn, Sturm
 Spira; Anastasiou, Bucherer, Kunszt
- Available fully differential code at NNLO
 - FeHiP/FehiPro, HNNLO
 Catani, Grazzini, Sargsyan
 Anastasiou, Melnikov, Petriello, Bucherer, Bucherer, Kunszt, Lazopoulos, Stoeckli

Intro: Drell-Yan Process

- Drell Yan process is crucial at hadron colliders
 - Detector Calibration
 - Luminosity Monitor
 - PDF Determination
 - New Physics Search
 - QCD and EW Study
- Very stable expansion in perturbative calculation
- Theoretical error below percent level

- qT resummation worked out using several different analytic methods and experimental data available for comparison
- Fully differential code at NNLO in QCD

Melnikov, Petriello, Gavin, YL,
• FEWZ, DYNNLO

Quackenbush

Catani, Cieri, Ferrera, De Florian, Grazzini,

Prospect of NNLO

NNLO now a booming industry:

H+1jet, top pair, di-boson, ...

Loop calculation

Boughezal, Caola, Melnikov, Petriello, Schulze; Chen, Gehrmann, Glover, Jaquier Czakon, Fiedler, Mitov; Abelof, Gehrmann-De Ridder, Maierhoefer, Pozzorini Cascioli, Gehrmann, Grazzini, Kallweit, MaierHoefer, von Manteuffel, Pozzorini, Rathlev Tancredi, Torre, Weihs, Anastasiou, Duhr, Lazopoulos

Many known but multi-scale 2-loop integrals still a
 Gehrmann, Jaquier, Glover, Koukoutsakis, Tancredi, Weihs
 Henn, Melnikov, Smirnov

Phase space integration (IR regularization)

Catani, Grazzini

qT-subtraction method;
 Cut-off method by phase space slicing;
 Phase space partitioning and sector decomposition;
 Antenna subtraction.

Abelof, Bernreuther, Bogner, Dekkers, Gehrmann-De Ridder, etc.

Questions

Why do NNLO ?

Quantitative predictive power only starts at NLO; need NNLO for high precision, especially for Higgs!

Why do Parton Shower?

Partonic level events not enough for detector simulation, need hadronic level events

What is Parton Shower

Very complicated environment inside LHC

 Short distance physics obscured by long distance ones

Initial state radiation

Final state radiation

Hadronization

Multiple Parton Interaction

Simulated by PS

•

PS bridges theoretical calculation with detector simulation

Enough?

PS bridges theoretical calculation with detector simulation

- Current way of interfacing NNLO is rather crude
 - Differential NNLO K-factor
- Intrinsic difficulty in combining NNLO with PS
 - Problem starts at NLO

(N)NLO and Parton Shower

- Loops / Virtual:
 - IR divergent by itself ⇒
 cannot shower divergence

PS have 0 to ∞ emissions ⇒
 double counting

(N)NLO and Parton Shower

- Problem 1: <u>IR divergence</u>
 - Fixed order has delicate cancellation between real and virtual
 - Parton shower eliminates divergence by resummation
- Problem 2: <u>double counting</u>
 - Fixed order adopts true ME
 - Parton shower ME is only approximate

IR singularity

- Real Emission ME is singular in IR limit
 - KLN theorem guarantees that IR sing. cancel between Real and Virtual

$$V \propto \left(\frac{1}{-\delta(t)}\right) \qquad \text{cancel !}$$

$$R \propto t^{-1-\epsilon} = \left(-\frac{1}{\epsilon}\delta(t) + [t^{-1-\epsilon}]_{+}\right)$$

plus distribution prescribes a sharp subtraction at t=0 to ensure finite inclusive result

$$\int dt \, [f(t)]_{+} g(t) = \int dt \, [f(t)]_{+} \, \{g(t) - g(0)\}$$

IR singularity

- IR-finite only inclusively: R diverges as it approaches t=0
- A simple way to do differential NLO is to have a cut-off that's below observable limit
 - below cut-off: Combined with Virtual
 - above cut-off: IR-div. regulated by cut-off

$$R \propto t^{-1-\epsilon} = -\frac{1}{\epsilon} + [t^{-1-\epsilon}]_{+}$$

$$\xrightarrow{t_0 \to 0} -\frac{1}{\epsilon} + \log(t_0)\delta(t) + \frac{1}{t}\theta(t - t_0) + \mathcal{O}(\epsilon)$$

 t_0

logarithmic dependence on cut-off

Logarithms

Observables like pT effectively introduce a cut-off

$$\Rightarrow L = \log(t_0)$$

- NLO: up to 1 emission
 - next-to-leading-logarithm (NLL)

$$\alpha_S(L^2,L)$$

- NNLO: up to 2 emissions
 - next-to-next-to-leading-logarithm (NNLL)

$$\alpha_S(L^2, L) + \alpha_S^2(L^4, L^3, L^2, L)$$

FO becomes unstable when L becomes large ⇒ resummation

IR Singularity in Parton Shower

Parton shower takes a different approach

Singularity suppressed by Sudakov

V=-R=-K if neglecting IR-finite
$$V \to e^V - 1 \xrightarrow{\text{terms}} e^{-K} - 1$$

$$R \to e^{-K} K$$

Sudakov Form Factor

 $\lim_{t \to 0} e^{-1/t} \frac{1}{t} \to 0$ do exp(-K) -Ma

K is approximately R; approaching R in IR limit

In the IR limit, the ME takes a factorized form

$$|\mathcal{M}_{n+1}|^2 \sim K_n |\mathcal{M}_n|^2$$

$$|\mathcal{M}_n|^2$$

$$|\mathcal{M}_n|^2$$

Multiple emissions are approximated by iterating the

above formula

minating scale egularte IR div.
$$1 + \int_{t_c}^{\mu_Q^2} dt \, K_n + \int_{t_c}^{\mu_Q^2} dt \, K_n \int_{t_c}^t dt \, K_{n+1} + \int_{t_c}^{t_Q} dt \, K_n \int_{t_c}^t dt' \, K_{n+1} \int_{t_c}^{t'} dt'' \, K_{n+2} + \dots$$

hard scale to start PS

terminating scale to regularte IR div.

Approximate Virtual by integrated Real

- A "failed" attempt to emit
- Iterated Virtual gives Sudakov form factor e^{-K}

$$\Pi_n(t_c, \mu_Q^2) = \exp\left\{-\int_{t_c}^{\mu_Q^2} dt \, K_n\right\} = 1 - \int_{t_c}^{\mu_Q^2} dt \, K_n(t) \Pi_n(t, \mu_Q^2)$$

$$\begin{split} &\Pi_n(t_c,\mu_Q^2) = \exp\left\{-\int_{t_c}^{\mu_Q^2} dt\,K_n\right\} = 1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\text{no emission probability} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 - \int_{t_c}^{\mu_Q^2} \frac{\text{failed emission @ t}}{dt\,K_n(t)} \frac{1}{\Pi_n(t,\mu_Q^2)} \\ &\xrightarrow{\mu_Q^2} \qquad t_c = \frac{1 -$$

Sudakov calculates zero emission probability in PS evolution

Rewrite:
$$1 = \Pi_n(t_c, \mu_Q^2) + \int_{t_c}^{\mu_Q^2} dt \, K_n(t) \Pi_n(t, \mu_Q^2)$$

Reinterpret:

no emission at all
$$1 = \Pi_n(t_c, \mu_Q^2) + \int_{t_c}^{\mu_Q^2} \frac{1 \text{ emission @ t}}{dt \ K_n(t) \Pi_n(t, \mu_Q^2)}$$
 no emission till t
$$= \frac{1}{\mu_Q^2} + \frac{1}{\mu_Q^2}$$

PS respects unitarity
 Virtual cancels Real perfectly ⇒ inclusive rate unchanged !

PS Generating Function $\mathcal{F}_n = \Pi_n(t_c,\mu_Q^2) + \int_{t_c}^{\mu_Q^2} dt \, K_n(t) \Pi_n(t,\mu_Q^2) \underline{\mathcal{F}_{n+1}}$ recursive def.

Parton Shower

Iterated for more emissions

$$1 = e^{-K} + e^{-K}Ke^{-K} + e^{-K}Ke^{-K}K + \dots$$

Infinite emissions: automatic resummation
iterated (ordered) single emissions ⇒ approx. NLL accurate

$$\exp\{\alpha_S(L^2,L)\}$$

Fix?

$$1 = e^{-K} + e^{-K}Ke^{-K} + e^{-K}Ke^{-K}K + \dots$$

Each emission can be corrected by actual MEs

$$e^{-K}K \rightarrow e^{-K}\left(K|_{t < t_0} + R|_{t > t_0}\right)$$
 merging scale

- Add ME correction in hard region
- Keep PS in IR region
- Use merging scales to separate two regions

"Fix the PS"

$$e^{-K} + e^{-K}K \to e^{-K} + e^{-K}(K|_{t < t_0} + R|_{t > t_0})$$

 mismatch is IR-finite and vanishes when merging scale becomes small

$$R - K \xrightarrow{t \to 0} 0$$

 Hard region restored at the expense of unitarity (extra Sudakov fades away)

$$e^{-K}R = \exp\{-\int_{t}^{\mu^{2}} dt' K(t')\} R(t)$$

$$\xrightarrow{t \to \mu^{2}} R$$

Merging scale dependence

Merging

$$e^{-K} + e^{-K}K \to e^{-K} + e^{-K}(K|_{t < t_0} + R|_{t > t_0})$$

- Merging of MEs:
 ME correction for each jet multiplicity in PS
 - merging scale dependence dominated by subleading logarithmic terms

IR limit of many emission ME not fully captured by PS

· Examples:

MLM, CKKW, CKKW-L, Truncated Shower, Pseudo-shower

Catani, Hoeche, Krauss, Kuhn, Lonnblad, Mangano, Mrenna, Richardson, Schumann, Siegert, Webber, ...

Matching

- Would also like to have higher order inclusive accuracy
 - correct emission pattern in hard region × (merging)
 - keep PS resummation in IR region × (merging)
 - correct FO inclusive rate

Matching @ NLO

- Apply NLO differential K-factor ?
 - PS starts with a single topology
 All shower emissions have a parent Born topology
 - LO has only Born topology for H/W/Z production, the final state is exclusively H/W/Z
 - NLO contains emission ME for H/W/Z production, there is final state of H/W/Z + 1 jet

Combining two multiplicities is addressed by merging but didn't do it "right"

Matching @ NLO

For simplicity take Born B=1

NLO:
$$1 + V + R = (1 + V + K) + (R - K)$$
PS: $e^{-K} + e^{-K}K$
finite
NLO \otimes PS: $(1 + V + K)(e^{-K} + e^{-K}K) + (R - K)$

- Use PS "K" as a subtraction term
 - Integrated to cancel IR div. in Virtual can be mapped to Born ⇒ (approx.) NLO K-factor
 - Keep differential to cancel IR div. in Real R-K difference is non-singular \Rightarrow hard remainder
 - PS makes up the "K" part: no double counting

Matching @ NLO

$$(1 + V + K)(e^{-K} + e^{-K}K) + (R - K)$$

Widely used approaches: MC@NLO, POWHEG

Frixione, Webber, Nason, Oleari

- POWHEG takes K=R
- Correct emission pattern in hard region ×
- Keep PS resummation in IR region ×
- Correct NLO inclusive rate ×

dominated by PS
$$k'_{\rm NLO}e^{-K}K + (R-K)$$

 $R \to K$

$$\rightarrow k'_{\rm NLO} e^{-K} K$$

$$e^{-K} \rightarrow 1$$
 full ME restored

$$k'_{\rm NLO}e^{-K}K + (R - K) \to R + \mathcal{O}(\alpha_S)$$

Merged Matching

- PS matched NLO can also be merged:

 Gehrmann, Hoeche, Krauss, Schoenherr, Siegert ...

 Gehrmann, Hoeche, Krauss, Schoenherr, Siegert ...
 - Example: W + n jets merged in Sherpa

Hoeche, Krauss, Schoenherr, Siegert arXiv:1207.5030

Extension to NNLO?

$$(1+V+K)(e^{-K}+e^{-K}K)+(R-K)$$

Require flexible subtraction method of NNLO
 flexible enough to be used in the PS "K" for numerical Sudakov

Hamilton, Nason, Zanderighi, Re

- MINLOS overcome the difficulty by using analytic Sudakov
 - process-specific
 - possible mismatch with Sudakov in subsequent PS
 - requires extra input of differential NNLO K-factor
- Is there another way to combine FO with PS?
 can we improve the merging procedure to achieve higher order accuracy?

Unitarized Merging

First restore unitarity for merging

Lonnblad, Prestel

modified Real ⇒ no more perfect cancellation btw Real and Virtual

$$e^{-K} + e^{-K}K) \rightarrow e^{-K} + e^{-K}(K|_{t < t_0} + R|_{t > t_0}) \text{ emission}$$

 Unitarized merging corrects Sudakov order by order to restore the cancellation

$$= \frac{1}{\mu_Q^2} + \frac{1}{\mu_Q^2}$$

UNLOPS

Hoeche, Lonnblad, Prestel, YL

Obtain NLO inclusive rate by adding additional terms

">" refers to
$$t > t_0$$

" < " refers to
$$t < t_0$$

$$e^{-K} + e^{-K}K \to 1 - e^{-K}(K_{<} + R_{>}) + e^{-K}(K_{<} + R_{>})$$

$$\xrightarrow{\text{add NLO}} 1 + V + R - e^{-K}(K_{<} + R_{>}) + e^{-K}(K_{<} + R_{>})$$

take merging scale to be as small as PS terminating scale

$$t_0 \to t_c \sim 0 \Rightarrow \operatorname{drop} K_{<}$$

separate Real by the terminating/merging scale

$$R = R_{<} + R_{>}$$

Phase Space Slicing

UNLOPS

- Correct emission pattern in hard region $\times e^{-K}R_{>} \to R$
- Keep PS resummation in IR region \times $e^{-K}R_{>} \rightarrow e^{-K}K$
- Correct NLO inclusive rate \times $\equiv 1 + V + R$

 $(1 - e^{-K})R_{>}$ obtained by probability conservation from $e^{-K}R_{>}$

- Subsequent PS continues in the one jet bin
- · Close related to the phase space slicing method

UNLOPS vs. MC@NLO/POWHEG

MC@NLO/POWHEG:
$$(1 + V + K)(e^{-K} + e^{-K}K) + (R - K)$$

UNLOPS: $1 + V + R_{<} + (1 - e^{-K})R_{>} + e^{-K}R_{>}$

- Matching (MC@NLO/POWHEG)
 - multiplicative (V is showered)
 - · closely related to the subtraction method

$$1 + V + R = (1 + V + K) + (R - K)$$

- Merging (UNLOPS)
 - additive (V is not showered)
 - · closely related to the phase space slicing method

$$1 + V + R = (1 + V + R_{<}) + R_{>}$$

higher order effect ⇒

regarded as theoretical uncertainty

Extension to NNLO?

$$MC@NLO/POWHEG: (1 + V + K)(e^{-K} + e^{-K}K) + (R - K)$$

- No generic extension
 - Currently no flexible subtraction method of NNLO

UNLOPS:
$$1 + V + R_{<} + (1 - e^{-K})R_{>} + e^{-K}R_{>}$$

- · Straightforward generic extension
 - first need NNLO calculation with phase space slicing

Sherpa NNLO

Catani, Grazzini

- qT < qT cut-off jet-vetoed NNLO
- qT > qT cut-off H/W/Z + 1jet @ NLO

- Phase space sliding method by H/W/Z qT (based on qT subtraction by Catani and Grazzini)
 - Above the cut-off: H/W/Z + 1jet @ NLO
 - Below the cut-off: Jetvetoed NNLO
 - Well approximated by prediction from factorization theorem

```
small qT cut-off ⇒
large cancellation ⇒
possible numerical instability
```

contains 2-loop virtual and IR limit of double real emission

Sherpa NNLO

- Sherpa now has H/W/Z production at NNLO
- · full event generation
- · interface with Rivet

• • •

- · (Relatively) Easy to do
 - Sherpa already has W/Z/H+1jet at NLO from Blackhat and internal implementation - very stable

Berger, Bern, Dixon, etc.

Ravindran, Smith, van Neerven

- Below qT cut-off obtained from existing SCET results
 well established
- Also combined with PS
 - Use the method of UN2LOPS

UNLOPS to UN2LOPS

UNLOPS: $1 + V + R + (1 - e^{-K})R + (e^{-K})R > 0$

qT < qT cut-off Jet-vetoed NNLO Born kinematics

qT > qT cut-off

NLO H/W/Z + 1jet

handled by MC@NLO

Residual IR divergence suppressed - incomplete PS is only approx. NLL NNLO contains NNLL

Doubly

unresolved

Approximate matrix element employed In doubly unresolved region. Integrate analytically

- UN2LOPS
 H/W/Z: NNLO inclu. accurate
 - H/W/Z + 1 jet: NLO inclu. accurate
 - H/W/Z + 2 jets: LO accurate
 - H/W/Z + >2 jets: PS accurate
 - H/W/Z + soft jets: most logs resummed (limited by PS accuracy)

Final Formula

$$\begin{split} \langle O \rangle &= \int \mathrm{d}\Phi_0 \, \bar{\bar{\mathbb{B}}}_0^{t_c} \, O(\Phi_0) \\ &+ \int_{t_c} \mathrm{d}\Phi_1 \, \Big[1 - \Pi_0(t_1, \mu_Q^2) \, \Big(w_1 + w_1^{(1)} + \Pi_0^{(1)}(t_1, \mu_Q^2) \Big) \Big] \, \mathrm{B}_1 \, O(\Phi_0) \\ &+ \int_{t_c} \mathrm{d}\Phi_1 \, \Pi_0(t_1, \mu_Q^2) \Big(w_1 + w_1^{(1)} + \Pi_0^{(1)}(t_1, \mu_Q^2) \Big) \, \mathrm{B}_1 \, \bar{\mathcal{F}}_1(t_1, O) \\ &+ \int_{t_c} \mathrm{d}\Phi_1 \, \Big[1 - \Pi_0(t_1, \mu_Q^2) \Big] \, \tilde{\mathrm{B}}_1^{\mathrm{R}} \, O(\Phi_0) + \int_{t_c} \mathrm{d}\Phi_1 \, \Pi_0(t_1, \mu_Q^2) \, \tilde{\mathrm{B}}_1^{\mathrm{R}} \, \bar{\mathcal{F}}_1(t_1, O) \\ &+ \int_{t_c} \mathrm{d}\Phi_2 \, \Big[1 - \Pi_0(t_1, \mu_Q^2) \Big] \, \mathrm{H}_1^{\mathrm{R}} \, O(\Phi_0) + \int_{t_c} \mathrm{d}\Phi_2 \, \Pi_0(t_1, \mu_Q^2) \, \mathrm{H}_1^{\mathrm{R}} \, \mathcal{F}_2(t_2, O) \\ &+ \int_{t_c} \mathrm{d}\Phi_2 \, \, \mathrm{H}_1^{\mathrm{E}} \, \mathcal{F}_2(t_2, O) \end{split}$$

Tree level amplitude and subtraction from Amegic or Comix

[Krauss, Kuhn, Soff] hep-ph/0109036, [Gleisberg, Krauss] arXiv:0709.2881, [Gleisberg, Hoeche] arXiv:0808.3674

One loop virtual matrix element from Blackhat, or internal Sherpa

[Berger et al.] arXiv:0803.4180, [Berger et al.] arXiv:0907.1984 arXiv:1004.1659 arXiv:1009.2338

NNLO vetoed cross section using recent SCET results

[Becher, Neubert] arXiv:1007.4005 arXiv:1212.2621, [Gehrmann, Luebbert, Yang] arXiv:1209.0682 arXiv:1403.6451 arXiv:1401.1222

Parton shower based on Catani-Seymour dipole

[Schumann, Krauss] arXiv:0709.1027

Combined in Sherpa event generation framework

[Gleisberg et al.] hep-ph/0311263 arXiv:0811.4622

DY: Validation with FEWZ and VRAP

$E_{ m cms}$	7 TeV	14 TeV	33 TeV	100 TeV
VRAP	$973.99(9)^{+4.70}_{-1.84}$ pb	$2079.0(3) \begin{array}{c} +14.7 \\ -6.9 \end{array}$ pb	4909.7(8) $^{+45.1}_{-27.2}$ pb	$13346(3) \begin{array}{c} +129 \\ -111 \end{array}$ pb
SHERPA	$973.7(3) \begin{array}{l} +4.78 \\ -2.21 \end{array}$ pb	$2078.2(10)^{+15.0}_{-8.0}$ pb	$4905.9(28)^{+45.1}_{-27.9}$ pb	$13340(14)^{+152}_{-110}$ pb

DY: Validation with DYNNLO

Hoeche, YL, Prestel arXiv:1405.3607

Higgs: Validation with HNNLO

Hoeche, YL, Prestel, arXiv:1407.3773

$E_{ m cms}$	7 TeV	14 TeV	33 TeV	100 TeV
HNNLO	$13.494(7)_{-1.382}^{+1.436} \text{ pb}$	$44.550(16)_{-3.954}^{+4.293} \text{ pb}$	$160.84(13)^{+13.29}_{-12.36} \text{ pb}$	_
SHERPA	$13.515(7)_{-1.382}^{+1.443} \text{ pb}$	$44.559(36)^{+4.226}_{-3.929}$ pb	$160.39(17)^{+13.47}_{-11.88} \text{ pb}$	$670.1(10)^{+47.9}_{-39.4} \text{ pb}$

- UN2LOPS trumps both MC@NLO for H/W/Z + 0 and 1 jet
 - Good agreement with W+0jet at low pT, and becomes W+1jet at high pT
 - Also correct inclusive NNLO rate W+0jet

Comparison with Exp.

- Largely agrees but large uncertainty in zero pT bin
 - Due to unresummed subleading logs of NNLO calculation
 - Scale variations of all finite pT bins propagate to zero pT bin by PS unitarity

Comparison with Exp.

- UN2LOPS acts on 0, 1 and 2 jet bin:
 - Excellent agreement
 - Reduced uncertainty
- Improvement by merging with W + 2,3,4 jets @ NLO
 - Further reduced uncertainty

UN2LOPS with Higgs

- The Application to Higgs: slight complication involved
 - Higgs NNLO is only worked out in EFT framework in massive top limit

"SM Higgs NNLO"
$$= H_g \times$$
 "EFT Higgs NNLO"

· Square of H-g-g effective coupling

generic NNLO

$$H_g = |c_g|^2 = h^{(0)} + \frac{\alpha_S}{4\pi}h^{(1)} + \left(\frac{\alpha_S}{4\pi}\right)^2 h^{(2)} + \dots$$

UN2LOPS with Higgs

In FO, product is expanded and truncated in as ⇒
 "individual" matching

 $h^{(0)}$ is multiplied by generic Higgs NNLO matched with U2LOPS $h^{(1)}$ is multiplied by generic Higgs NLO matched with MC@NLO $h^{(2)}$ is multiplied by generic Higgs LO with simple parton shower

PS is all about factorization ⇒ "factorized" matching

full H_g is multiplied by generic Higgs NNLO matched with U2LOPS

At 14TeV LHC, compared to "individual", "factorized" matching adds 14% w.r.t. Higgs LO 5% w.r.t. Higgs NNLO because large Higgs NLO is further enhanced by HO terms of Hg

Higgs Rapidity

Hoeche, YL, Prestel arXiv:1407.3773

- left: "individual" matching; right: "factorized" matching
- Big improvement over MC@NLO
- Higgs rapidity spectrum unaffected by PS

Outlook

- Provides experimental analysis with best theoretical accuracy at event out level
 - Straightforward to include finite top mass effect in UN2LOPS for Higgs
 - Same is true to include EW effects for both Higgs and DY processes
- UN2LOPS is a general framework
 - All differential NNLO calculation can be interfaced with given a suitable cut-off/merging parameter
 - Further improvement relies on an improved parton shower

Outlook

 For well studied processes like Higgs and DY, an improved parton shower could be implemented based on analytic resummation

essentially adding ad-hoc terms to the parton shower kernels in order to reproduce the Sudakov form factor accurate to NNLL work in progress

- Pros
 All NNLO divergences are within control
 Uncertainty of parton shower is reduced
- Cons
 Sudakov from analytic resummation is process-specific and observable-dependent

Summary

- First practical implementation of NNLO+PS for DY processes, also applied to Higgs production
 - Truly accessible NNLO for experimental analysis
 - Improved precision for Higgs and BSM study
 - Reduced uncertainty in traditional PS
- Flexible implementation, thanks to the Sherpa framework
 - Event generation at both NNLO and NNLO+PS
 - Interface with analysis tools such as Rivet available
 - Plugin to Sherpa (provided upon request)
- Parton shower improvement desirable for better overall accuracy

Back Up

Higgs pT distribution

HqT: state-of-the-art NNLO+NNLL

Bozzi, Catani, De Florian, Ferrera, Grazzini, Tommasini

Hoeche, YL, Prestel arXiv:1407.3773

- Harder pT spectrum in "factorized" matching
- Lower resummation accuracy of UN2LOPS than HqT